3D-Scan Optimierung Randgenauigkeit und Dezimieren

3D-Scan Optimierung Randgenauigkeit und Dezimieren

Bei den 3D-Scanner von Creaform gibt es zwei Parameter, die sich nicht auf den ersten Blick erschließen. Die Hilfe liefert dazu auch wenig erhellendes. Es geht um die Randgenauigkeit und das Dezimieren. Beide Parameter haben eine Einfluss auf die Qualität und die Rechenzeit bei der Erstellung des Netztes. Um der Sache auf den Grund zu gehen habe ich eine Borschablone und ein Gehäuse mit dem HandyScan Black | Elite erfasst.

Optimieren durch Dezimieren

Beim automatischen Dezimieren werden Bereiche mit wenig Details und Krümmung gröber vernetzt als flache Bereichen. Zur Veranschaulichung eine Schreibtischplatte kann ich mit zwei Dreiecken perfekt abbilden. Der positive Effekt vom Dezimieren ist das die Anzahl der Dreiecke drastisch reduziert wird. Ohne großen Qualitätsverlust kann man so ca. 60% der Daten einsparen. Der Nachteil ist, dass es Rechenzeit kostet das Model zu Dezimieren. Bei kleinen Modellen wirkt sich das nicht sehr stark aus bei dem Beispiel hat die Berechnung mit Dezimieren 20 Sekunden gedauert ohne das Dezimieren war die Berechnung in 18 Sekunden fertig. Bei großen Modellen sind die Unterschiede gravierender.

Neben dem VXElements kann man die Modelle auch im Design X reduzieren. Das Design X bietet dabei noch weiter Parameter an, um auf das Ergebnis Einfluß zu nehmen.

In dem Bild seht Ihr dreimal den selben Scan.

  • Blau ohne dezimieren
  • Gelb mit Deszimieren im VXElements
  • Grün mit Dezimieren im Design X

Was man gut erkennen kann, ist das Bereiche mit starker Krümmung mit kleinen Dreiecken Vernetzt werden und Flache Bereiche mit großen Dreiecken vernetzt werden. Wenn man das Resultat vom Design X mit dem VXElements vergleicht, fällt auf dass die Dreiecke im Design X (grün) stärker an den Übergängen ausgerichtet sind. Das hat beim Reverse Engineering bei der Selektion Vorteile. Das ist aber eher marginal.

Teaser Mesh vs. Volumnen

Reverse-Engineering Propeller

Reverse-Engineering – Vorgehen im Design X

Beim Reverse Engineering eines Propellers, wird man sich erstmal mit den Grundzügen den Theorie beschäftigen. Einen guten Einstieg findet Ihr in dem Artikel „Der Propeller, das unverstandenen Wesen“. In diesem Artikel findet Ihr neben der Theorie auch einen Verwies auf ein Applet mit dem Ihr einen Propeller selber entwickeln könnt. Was jedem klar sein muss, der Schwerpunkt und der Drehpunkt müssen an der selben Stelle sein.

Für das Reverse Engineering habe ich das Design X eingesetzt. Damit könnt Ihr sehr komfortabel und schnell die Geometrie entwickeln. Die Herausforderung bei diesem Reverse Engineering ist es zu verhindern, dass beim Loften die Profile unvorhersehbar twisten. Damit das nicht passiert, habe ich zwei Leitlinien an der Leading- und an der Trailing- Edge erstellt.

Leitlinien Leading Edge Trailing Edge

Die einzelnen Profile auf dem Flügel wurden alle auf einer Ebenen Fläche erstellt. Das erledigt das Design X mit einem Klick. Den Anschluss des Propellers an die Zylindrische Aufnahme erfordert einen anderen Ansatz, das diese Profile nicht mehr Eben ist.

Diese 3D-Profil wird erstellt, indem man einen Zylinder als Fläche konstruiert. In dem Bild ist das die gelbe Fläche. Dann lässt man das Design X die Schnittkurve zwischen dem Netz und der halben Zylinderfläche berechnen. Dieser 3D-Sketch wird dann gemeinsam mit den Ebenen Profilen für den Loft benutzt.

In dem Video findet Ihr exemplarisch das Vorgehen für das Reverse Engineering. Im Anschluss habe ich den Propeller mit meinem Formlabs SLA Drucker gedruckt.

3D-Druck

Preform 3D-Druck Vorbereitung

Ist das Model erstmal vorhanden ist es ein leichtes den Propeller zu Drucken. Ich setze zum Drucken von komplexen Bauteilen einen SLA Drucker von Formlabs ein. Meiner Meinung nach stimmt bei den Formlabs Druckern Preis und Qualität. Zusätzlich erhaltet Ihr für die SLA Drucker eine Reihen von technischen Harzen, mit denen ihr Funktionsteile drucken könnt.

Fertiger Propeller auf meinem Schreibtisch

Mit der Kombination 3D-Scannen, Reverse-Engineering und 3D-Druck könnt Ihr heute viele Bauteile innerhalb von 24h herstellen und das zu einem Preise der vor einigen Jahren noch noch nicht vorstellbar gewesen ist. Für das Drucken benötigt Ihr 20ml Resin benötigt. Je nachdem was für ein Resin eingesetzt wird. kostet der Liter zwischen 160€ und 300€ macht Materialkosten von 5€ für das Bauteil.

Coole Sache ODER?

Öffentliche 3D-Scans

Öffentliche 3D-Scans

Im Internet findet man verschiedene Seiten, die 3D-Daten von gescannten Objekten anbieten. Ich habe mit die Mühe gemacht und für euch Seiten herausgesucht, auf denen Ihr interessante Scans herunterladen könnt. Auf den meisten Seiten könnt Ihr die Daten direkt im Browser betrachten. Wer das lieber auf seinem eigenen PC machen möchte, der kann sich MeshLab herunterladen.

Smithonian 3D

Ein Sammelsurium von allem in beeindruckende Qualität.

  • Command Module Apollo 11
  • Tyrannosaurus rex
  • Bell X-1
  • George Washington

und so viel mehr. Die meisten Scandaten sind auch noch in Farbe. Der Abend ist vermulich gelaufen

 

Cosmo Wenmann

Auf dieser Seite findet Ihr vorm allen 3D-Scans, die für Museen angefertigt wurden. Mein Highlight ist der Scan von Nofretete. Es findert sich aber noch reichlich mehr an sehr guten Scans auf diese Seite.

  • Nofretete
  • Die Venus von Milo
  • The Getty Kouros
  • Kaiser Augustus 
  • Ramesses der II

CULTLAB3D

Auf dieser Seite könnt ihr euch darüber informieren, mit welchen Geräten professionell Kulturgüter mit dem Scanner erfasst werden.